Recursive Bayesian synthetic aperture geoacoustic inversion in the presence of motion dynamics.
نویسندگان
چکیده
A low signal to noise ratio (SNR), single source/receiver, broadband, frequency-coherent matched-field inversion procedure recently has been proposed. It exploits coherently repeated transmissions to improve estimation of the geoacoustic parameters. The long observation time improves the SNR and creates a synthetic aperture due to relative source-receiver motion. To model constant velocity source/receiver horizontal motion, waveguide Doppler theory for normal modes is necessary. However, the inversion performance degrades when source/receiver acceleration exists. Furthermore processing a train of pulses all at once does not take advantage of the natural incremental acquisition of data along with the ability to assess the temporal evolution of parameter uncertainty. Here a recursive Bayesian estimation approach is developed that coherently processes the data pulse by pulse and incrementally updates estimates of parameter uncertainty. It also approximates source/receiver acceleration by assuming piecewise constant but linearly changing source/receiver velocities. When the source/receiver acceleration exists, it is shown that modeling acceleration can reduce further the parameter estimation biases and uncertainties. The method is demonstrated in simulation and in the analysis of low SNR, 100-900 Hz linear frequency modulated (LFM) pulses from the Shallow Water 2006 experiment.
منابع مشابه
Broadband synthetic aperture geoacoustic inversion.
A typical geoacoustic inversion procedure involves powerful source transmissions received on a large-aperture receiver array. A more practical approach is to use a single moving source and/or receiver in a low signal to noise ratio (SNR) setting. This paper uses single-receiver, broadband, frequency coherent matched-field inversion and exploits coherently repeated transmissions to improve estim...
متن کاملChange-point detection for recursive Bayesian geoacoustic inversions.
In order to carry out geoacoustic inversion in low signal-to-noise ratio (SNR) conditions, extended duration observations coupled with source and/or receiver motion may be necessary. As a result, change in the underlying model parameters due to time or space is anticipated. In this paper, an inversion method is proposed for cases when the model parameters change abruptly or slowly. A model para...
متن کاملBayesian geoacoustic inversion using wind-driven ambient noise.
This paper applies Bayesian inversion to bottom-loss data derived from wind-driven ambient noise measurements from a vertical line array to quantify the information content constraining seabed geoacoustic parameters. The inversion utilizes a previously proposed ray-based representation of the ambient noise field as a forward model for fast computations of bottom loss data for a layered seabed. ...
متن کاملImproving the quality of ultrasound images using Bayesian estimators
Medical ultrasound imaging due to close behavior of cancer tumors to body tissues has a low contrast. This problem with synthetic aperture imaging method has been addressed. Although the synthetic aperture imaging technique solved the low-contrast problem of ultrasound images, to an acceptable limit, but the performance of these methods is not even acceptable when the signal to noise ratio (SNR...
متن کاملRange-Dependent Geoacoustic Inversion: Results From the Inversion Techniques Workshop
Model-based geoacoustic inversion in range-dependent underwater environments is a challenging task constrained by data quality (synthetic or measured) and propagation-model efficiency and accuracy. The Inversion Techniques Workshop (ITW), held in Gulfport, MS, May 15–18, 2001, was organized for the acoustics community to present state-of-the-art numerical geoacoustic inversion capabilities in r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 136 3 شماره
صفحات -
تاریخ انتشار 2014